If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1269-16t^2=0
a = -16; b = 0; c = +1269;
Δ = b2-4ac
Δ = 02-4·(-16)·1269
Δ = 81216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{81216}=\sqrt{576*141}=\sqrt{576}*\sqrt{141}=24\sqrt{141}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{141}}{2*-16}=\frac{0-24\sqrt{141}}{-32} =-\frac{24\sqrt{141}}{-32} =-\frac{3\sqrt{141}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{141}}{2*-16}=\frac{0+24\sqrt{141}}{-32} =\frac{24\sqrt{141}}{-32} =\frac{3\sqrt{141}}{-4} $
| 3p+6+7=-7+3p-4-4p | | 69-7g+3)=-(6+12g)-6 | | 12=2(s+2) | | 1+7k+7=8 | | 1.3x-2.6=x | | +4p-+4p=0 | | 3(x-9)=94 | | 4t+20-3=6+-13 | | 7+6.4/x=7.8 | | -(16/5)=-8x | | (4/11)a+(16/121)a+(64/1331)a=768 | | -d=-20-2d | | 7v/5=-35 | | -36x^2+169=0 | | 4(4-x)+6(x-1)=x+200 | | 5=j-55/7 | | 7(t-2)+7t=7(2t+2)-13 | | j-55/7=5 | | -10=7x-10 | | -3x-6/4=5+x/3 | | 7(4-k)3(6-8k)=78 | | 10(2-4n)3n=353 | | 4x-10x=38 | | 8(4x+9)=0 | | 96+45+y=360 | | 6(b-7)+4(-6b+3)=42 | | -2x-17(x+3)=-3(6x+5) | | 6(1+5b)=-204 | | -3(4p+3)-2(6-14p)=3(2+5p) | | 90=9(r-5) | | 5x-10-2x=9 | | t+25/5=7 |